
North American Climate in CMIP5 Experiments. Part I: Evaluation of Historical
Simulations of Continental and Regional Climatology*

JUSTIN SHEFFIELD,a ANDREW P. BARRETT,b BRIAN COLLE,c D. NELUN FERNANDO,d RONG FU,e

KERRIE L. GEIL,f QI HU,g JIM KINTER,h SANJIV KUMAR,h BAIRD LANGENBRUNNER,i KELLY LOMBARDO,c

LINDSEY N. LONG,j ERIC MALONEY,k ANNARITA MARIOTTI,l JOYCE E. MEYERSON,i KINGTSE C. MO,m

J. DAVID NEELIN,i SUMANT NIGAM,n ZAITAO PAN,o TONG REN,e ALFREDO RUIZ-BARRADAS,n YOLANDE

L. SERRA,f ANJI SETH,p JEANNE M. THIBEAULT,p JULIENNE C. STROEVE,b ZE YANG,e AND LEI YIN
e

aDepartment of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
bNational Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences,

University of Colorado Boulder, Boulder, Colorado
c School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York

d Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, and Visiting Scientist Programs, University Corporation

for Atmospheric Research, Boulder, Colorado, and SurfaceWater ResourceDivision, TexasWaterDevelopment Board, Austin, Austin, Texas
e Jackson School of Geosciences, The University of Texas at Austin, Texas

fDepartment of Atmospheric Sciences, University of Arizona, Tucson, Arizona
g School of Natural Resources, and Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska

hCenter for Ocean–Land–Atmosphere Studies, George Mason University, Fairfax, Virginia
iDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

jWyle Science, Technology and Engineering, and NOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland
kDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

lNational Oceanic and Atmospheric Administration/Office of Oceanic and Atmospheric Research, Silver Spring, Maryland
mNOAA/NWS/NCEP/Climate Prediction Center, College Park, Maryland

nDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
o Saint Louis University, St. Louis, Missouri

pDepartment of Geography, University of Connecticut, Storrs, Connecticut

(Manuscript received 30 July 2012, in final form 15 May 2013)

ABSTRACT

This is the first part of a three-part paper onNorthAmerican climate in phase 5 of theCoupledModel Intercomparison Project

(CMIP5) that evaluates the historical simulations of continental and regional climatology with a focus on a core set of 17 models.

The authors evaluate themodels for a set of basic surface climate and hydrological variables and their extremes for the continent.

This is supplemented by evaluations for selected regional climate processes relevant to North American climate, including cool

seasonwesternAtlantic cyclones, theNorthAmericanmonsoon, theU.S.Great Plains low-level jet, andArctic sea ice. In general,

themultimodel ensemblemean represents the observed spatial patterns of basic climate and hydrological variables but with large

variability acrossmodels and regions in themagnitude and sign of errors.No singlemodel stands out as beingparticularly better or

worse across all analyses, although somemodels consistently outperform the others for certain variables across most regions and

seasons and higher-resolution models tend to perform better for regional processes. The CMIP5 multimodel ensemble shows

a slight improvement relative toCMIP3models in representing basic climate variables, in terms of themean and spread, although

performance has decreased for some models. Improvements in CMIP5 model performance are noticeable for some regional

climate processes analyzed, such as the timing of theNorthAmericanmonsoon. The results of this paper have implications for the

robustness of future projections of climate and its associated impacts, which are examined in the third part of the paper.

* Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-12-00592.s1.
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1. Introduction

This is the first part of a three-part paper on the phase

5 of the CoupledModel Intercomparison Project (CMIP5;

Taylor et al. 2012) model simulations for North America.

The first two papers evaluate the CMIP5 models in their

ability to replicate the observed features of North

American continental and regional climate and related

climate processes for the recent past. This first part

evaluates the models in terms of continental and re-

gional climatology, and Sheffield et al. (2013, hereafter

Part II) evaluates intraseasonal to decadal variability.

Maloney et al. (2013, manuscript submitted to J. Climate,

hereafter Part III) describes the projected changes for the

twenty-first century.

The CMIP5 provides an unprecedented collection of

climate model output data for the assessment of future

climate projections as well as evaluations of climate

models for contemporary climate, the attribution of

observed climate change, and improved understanding

of climate processes and feedbacks. As such, these data

feed into the Intergovernmental Panel on Climate Change

(IPCC) Fifth Assessment Report (AR5) and other global,

regional, and national assessments. The goal of this study

is to provide a broad evaluation of CMIP5 models in their

depiction of North American climate and associated

processes. The set of climate features and processes

examined in this first part were chosen to cover the cli-

matology of basic surface climate and hydrological vari-

ables and their extremes at daily to seasonal time scales,

as well as selected climate features that have regional

importance. Part II covers aspects of climate variability,

such as intraseasonal variability in the tropical Pacific, the

El Ni~no–Southern Oscillation (ENSO), and the Atlantic

multidecadal oscillation,which playmajor roles in driving

North American climate variability. This study draws

from individual work by investigators within the CMIP5

Task Force of the National Oceanic and Atmospheric

Administration (NOAA) Modeling Analysis and Pre-

diction Program (MAPP). This paper is part of a Journal

of Climate special collection onNorthAmerica inCMIP5

models, and we draw from individual papers within the

special collection, which provide detailed analysis of

some of the climate features examined here.

We begin in section 2 by describing the CMIP5, pro-

viding an overview of themodels analyzed, the historical

simulations, and the general methodology for evaluating

the models. We focus on a core set of 17 CMIP5 models

that represent a large set of climate centers and model

types and synthesize model performance across all

analyses for this core set. Details of the observational

datasets to which the climate models are compared are

also given in this section. The next two sections focus on

different aspects of North American climate and surface

processes. Section 3 begins with an overview of climate

model depictions of continental climate, including sea-

sonal precipitation, air temperature, sea surface tem-

peratures, and atmospheric and surface water budgets.

Section 4 evaluates themodel simulations of extremes of

temperature and surface hydrology and temperature-

based biophysical indicators such as growing season

length. Section 5 focuses on regional climate features

such as North Atlantic winter storms, the Great Plains

low-level jet, and Arctic sea ice. The results are synthe-

sized in section 6 and compared to results from CMIP3

models for selected variables.

2. CMIP5 models and simulations

a. CMIP5 models

We use data from multiple model simulations of the

‘‘historical’’ scenario from the CMIP5 database. The

scenarios are described inmore detail below. The CMIP5

experiments were carried out by 20 modeling groups

representingmore than 50 climatemodels with the aim of

further understanding past and future climate change in

key areas of uncertainty (Taylor et al. 2012). In particular,

experiments focus on understanding model differences in

clouds and carbon feedbacks, quantifying decadal climate

predictability and why models give different answers

when driven by the same forcings. The CMIP5 builds

on the previous phase (CMIP3) experiments in several

ways. First, a greater number of modeling centers and

models have participated. Second, the models generally

run at higher spatial resolution with some models being

more comprehensive in terms of the processes that they

represent, therefore hopefully resulting in better skill in

representing current climate conditions and reducing

uncertainty in future projections. Table 1 provides an

overview of the models used.

To provide a consistent evaluation across the various

analyses, we focus on a core set of 17 models, which are

highlighted in the table by asterisks. The core set was

chosen to span a diverse set ofmodeling centers andmodel

types [coupled atmospheric–ocean models (AOGCM),

Earth system models (ESM), and models with atmo-

spheric chemistry (ChemAO and ChemESM)] and in-

cludes an AOGCM and ESM from the same modeling

center for three centers [Geophysical Fluid Dynamics

Laboratory (GFDL), Hadley Center, and Atmosphere

andOceanResearch Institute (AORI)/National Institute

for Environmental Studies (NIES)/ Japan Agency for

Marine-Earth Science and Technology (JAMSTEC)].

The set was restricted by data availability and processing

constraints, and so for some analyses (in particular those
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requiring high-temporal-resolution data) a smaller subset

of the core models was analyzed. When data for noncore

models were available, these were also evaluated for

some analyses and the results are highlighted if they

showed better (or particularly poor) performance. The

specific models used for each individual analysis are

provided within the results section where appropriate.

b. Overview of methods

Data from the historical CMIP5 scenarios are evalu-

ated in this study. The historical simulations are run in

coupled atmosphere–ocean mode forced by historical

estimates of changes in atmospheric composition from

natural and anthropogenic sources, volcanoes, green-

house gases (GHGs), and aerosols, as well as changes in

solar output and land cover. Note that only anthro-

pogenic GHGs and aerosols are prescribed common

forcings to all models, and each model differs in the set

of other forcings that it uses, such as land-use change.

For ESMs, the carbon cycle and natural aerosols are

modeled and are therefore feedbacks, and we take this

into consideration when discussing the results. For cer-

tain basic climate variables we also analyze model sim-

ulations from the CMIP3 that provided the underlying

climate model data to the IPCC Fourth Assessment

Report (AR4). Several models have contributed to both

the CMIP3 and CMIP5 experiments, either for the same

version of the model or for a newer version, and this

allows a direct evaluation of changes in skill in individual

models as well as the model ensemble.

Historical scenario simulations were carried out for

the period from the start of the industrial revolution to

near the present: 1850–2005. Our evaluations are gen-

erally carried out for themost recent 30 yr, depending on

the type of analysis and the availability of observations.

For some analyses the only—or best available—data are

from satellite remote sensing, which restricts the anal-

ysis to the satellite period, which is generally from 1979

onward. For other analyses, multiple observational da-

tasets are used to represent the uncertainty in the ob-

servations. An overview of the observational datasets

used in the evaluations is given in Table 2, categorized

by variable. Further details of these datasets and any

data processing are given in the relevant subsections and

figure captions. Where the comparisons go beyond 2005

(e.g., 1979–2008), model data from the representative

concentration pathway 8.5 (RCP8.5) future projection

scenario simulation are appended to the model historical

time series. Most of the models have multiple ensemble

members and in general we use the first ensemble mem-

ber. In some cases, the results for multiple ensembles are

averaged where appropriate or used to assess the vari-

ability across ensemble members. Results are generally

shown for the multimodel ensemble (MME) mean and

for the individual models using performance metrics

that quantify the errors relative to the observations.

3. Continental seasonal climate

We begin by evaluating the seasonal climatologies

of basic climate variables: precipitation, near-surface

air temperature, sea surface temperature (SST), and

atmosphere–land water budgets.

a. Seasonal precipitation climatology

Figure 1 shows the model precipitation climatology

and Global Precipitation Climatology Project (GPCP;

Adler et al. 2003) observations for December–February

(DJF) and June–August (JJA) for 1979–2005. Table 3

shows the seasonal biases in precipitation for North

America, the United States, and six regions. Most of the

models do reasonably well in producing essential large-

scale precipitation features, and the bias in the MME

mean seasonal precipitation over NorthAmerica is about

12% and21% for DJF and JJA, respectively. However,

there are substantial differences among the models and

with observations at the regional scale (Table 3), with

generally an overestimation of precipitation in more hu-

mid and cooler regions, and an underestimation in drier

regions. For the winter season (Fig. 1, left), the Pacific

storm track is very reasonably placed in latitude as it ap-

proaches the coast. One important aspect of this, the angle

of the storm track as it bends northward approaching the

coast from roughly Hawaii to central California, is well

reproduced in the models. The intensity of the storm

tracks off the West Coast compares reasonably well to

the GPCP product shown here. The model rainfall is not

quite intense enough at the coast and spreads slightly too

far inland, as might be expected for the typical model

resolution, which does not fully resolve mountain ranges

and may help explain the overestimation by all models

for WNA (see Table 3 for region definitions). The East

Coast storm tracks are well placed inDJF (see section 5a

on wintertime extratropical cyclones) and the multi-

model ensemble mean does a good job in replicating the

eastern Pacific intertropical convergence zone (ITCZ),

although northern Mexico receives too much rainfall.

Figure 1c provides a model by model view of these

features using the 3mmday21 contour for eachmodel to

provide an outline of the major precipitation features. If

the models were in line with observations, all contours

would lie exactly along the boundary of the shaded ob-

servations. Taking into account the high latitude precip-

itation excess in the Pacific storm track, individualmodels

do quite well at reproducing each of the main features of

the DJF climatology, including the arrival point at the
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North American west coast of the southern edge of the

Pacific storm track. Only a few models exhibit the ITCZ

extension feature that accounts for the northern Mexico

precipitation excess.

For the summer season (JJA; Fig. 1, right), the ITCZ

and the Mexican monsoon are reasonably well simu-

lated in terms of position (see section 5d on the North

American monsoon), although the precipitation mag-

nitude in parts of the Caribbean is underestimated rel-

ative to GPCP. The East Coast storm track in the

multimodel ensemble mean is too spread out and less

coherent than observed. This is due to substantial dif-

ferences in the placement of these storm tracks in the

individual models (Fig. 1d). The majority of the models

exhibit excessive precipitation in at least some part of

the continental interior. While the bulk of themodels do

reasonably well at the poleward extension of the mon-

soon over Central America, Mexico, and the inter-

American seas region, a few models underestimate this

extent, putting a split between the poleward extension of

themonsoon feature and the start of the East Coast storm

track. Overall, the models underestimate JJA precip-

itation over the Central America (including Mexico) and

central North America regions (Table 3).

b. Seasonal surface air temperature climatology

Figure 2 compares the model simulated surface air

temperature climatology to the observation estimates

from National Centers for Environmental Predic-

tion (NCEP)–U.S. Department of Energy (DOE) Re-

analysis 2 and the Climatic Research Unit (CRU) TS3.0

station-based analysis. The MME mean compares well

to the observations in most respects. Differences from

both observational estimates are less than or on the or-

der of 18C over most of the continent except for certain

regions (see Table 4). Themultimodel ensemblemean is

cooler than both datasets over northern Mexico in DJF.

In high latitudes, differences between the observational

estimates are large enough that the error patterns in

Figs. 2f and 2g differ substantially, especially in DJF

[NCEP–DOE is also slightly warmer than the North

American Regional Reanalysis (not shown) in this re-

gion and season]. Beyond the overall simulation of the

north–south temperature gradient and seasonal evolution,

certain regional features are well represented. In JJA, this

includes the regions of temperatures exceeding 308C over

Texas and near the Gulf of California and the extent

of temperatures above 108C, including the northward

TABLE 2. Observational and reanalysis datasets used in the evaluations.

Dataset Type Spatial domain Temporal domain Reference

Precipitation

CMAP v2 Gauge/satellite 2.58, global Monthly/pentad,

1979–present

Xie and Arkin 1997

GPCP v2.1 Gauge/satellite 1.08, global Monthly, 1979–2009 Adler et al. 2003

CRU TS3.1 Gauge 0.58, global land Monthly, 1901–2008 Mitchell and Jones 2005

CMAP v2 Gauge/satellite 2.58, global Monthly/pentad,

1979–present

Xie and Arkin 1997

CPC-Unified Gauge 0.58, United States Daily, 1948–2010 Xie et al. 2010

CPC US–Mexico Gauge 1.08, United States/Mexico Daily, 1948–present Higgins et al. 1996

UW Gauge 0.58, United States Daily, 1916–2009 Maurer et al. 2002

P-NOAA Gauge 0.58, North America Monthly, 1895–2010 R. Cook and E. Vose 2011,

personal communication

Temperature

CRU TS3.1 Gauge 0.58, global land Monthly, 1901–2008 Mitchell and Jones 2005

GHCN Gauge 2.58, global land Daily, varies Vose et al. 1992

HadGHCND Gauge 2.58 3 3.758, global land Daily, 1950–2000 Caesar et al. 2006

Sea surface temperature and sea ice

HadISSTv1.1 In situ/satellite 1.08, global oceans Monthly, 1870–present Rayner et al. 2003

NSIDC sea ice index Satellite Arctic basin Monthly, 1979–present Fetterer et al. 2002

ICESat Satellite 25 km, Arctic basin Monthly, 2003–08 Kwok and Cunningham 2008

Land surface hydrology

NLDAS-UW Multiple LSMs 0.58, United States Daily, 1916–2009 Wang et al. 2009

VIC VIC LSM 1.08, global land 3-hourly, 1948–2008 Sheffield and Wood 2007

GLDAS Noah LSM 1.08, global land 3-hourly, 1979–2008 Rodell et al. 2004

Reanalyses

NCEP–NCAR Model reanalysis ;1.98, global 6-hourly, 1948–present Kalnay et al. 1996

NCEP–DOE Model reanalysis ;1.98, global 6-hourly, 1979–present Kanamitsu et al. 2002

CFSR Model reanalysis ;0.38, global 6-hourly, 1979–2010 Saha et al. 2010

20CR Model reanalysis 2.08, global 6-hourly, 1871–present Compo et al. 2011
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FIG. 1. Precipitation climatology (mmday21) for (left) December–February and (right) June–August (1979–2005).

(a) GPCP estimate of observed precipitation for DJF. (b) MME mean over the 18 models for DJF; for models with

multiple runs, all runs are averaged before inclusion in the multimodel ensemble. (c) Comparison of individual

models to observations using the 3mmday21 contour as an index of the major precipitation features: half the models

are shown in each of keys I and II with the legend giving the color coding for the models in each. Shading shows the

regions where GPCP exceeds 3mmday21; a model with no error would have its contour fall exactly along the edge of

the shaded region. (d)–(f) As in (a)–(c), but for JJA. The model data were regridded to the resolution of the GPCP

observations (2.58).
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extension of this region into the Canadian prairies.

Individual model surface air temperature climatologies,

which are shown in the supplementarymaterial (Figs. S1

and S2) and in terms of biases in Table 4, exhibit sub-

stantial regional scatter, including excessive northward

extent of the region above 308C through the Great Plains

in three of the models (CanESM2, CSIRO Mk3.6.0, and

FGOALS-s2; see Table 1 for expanded model names).

In DJF, the multimodel ensemble mean does a good job

of representing the 08C contour, while the 108C contour

extends slightly too far south, yielding slightly cool

temperatures overMexico, with 15 out of 18models with

cold biases over the broader CAM region (Table 4). The

wintertime cold bias relative to both observational es-

timates in very high latitudes is more pronounced in

certain models such as HadGEM2-ES, which is biased

low by27.08 and25.18Cover theALAandNEC regions,

respectively (Table 4). The intermodel scatter in surface

temperature simulations is summarized in Fig. 2d for

DJF and Fig. 2j for JJA using the intermodel standard

deviation of the ensemble (i.e., the standard deviation at

each gridpoint among the 18model climatologies seen in

TABLE 3. DJF and JJA bias (% of observedmean) in CMIP5 continental and regional precipitation relative to the GPCP observations.

Themean and standard deviation of the biases across themultimodel ensemble are also given. NA is 108–728N and 1908–3058E; CONUS is

258–508N and 2358–2858W; and the regions defined in the table are ALA, NEC, ENA, CAN, WNA, and CAM, as modified from Giorgi

and Francisco (2000) and shown in supplementary Fig. S3.

Model

North

America

(NA)

Contiguous

United States

(CONUS)

Alaska

(ALA)

Northeast

Canada

(NEC)

Eastern

North America

(ENA)

Central

North America

(CNA)

West

North America

(WNA)

Central

America

(CAM)

DJF

BCC-CSM1.1 14.84 21.39 40.32 21.40 210.24 216.38 47.51 97.71

CanESM2 23.80 25.53 1.24 9.81 22.23 213.22 5.26 221.09

CCSM4 17.13 10.24 49.31 16.52 27.87 220.21 48.87 64.19

CNRM-CM5 0.44 21.58 4.50 20.05 25.71 225.48 27.34 1.55

CSIRO Mk3.6.0 2.82 5.35 16.78 7.36 211.15 28.46 20.41 13.45

GFDL CM3 18.92 27.41 19.57 7.98 4.46 22.60 52.70 59.52

GFDL-ESM2M 10.09 14.70 4.50 11.77 0.03 216.67 40.63 45.80

GISS-E2-R 23.68 25.18 32.55 15.27 1.45 26.81 47.96 110.22

HadCM3 2.59 14.43 29.81 0.84 10.82 24.61 27.56 225.27

HadGEM2-ES 1.38 4.26 24.11 29.20 6.66 24.44 13.90 24.44

INM-CM4.0 40.75 25.34 75.24 56.06 14.36 27.40 71.31 97.49

IPSL-CM5A-LR 16.64 12.38 53.18 18.24 4.84 214.11 42.28 25.43

MIRCO5 7.51 7.94 14.83 11.28 21.46 213.67 29.22 28.43

MIROC-ESM 16.82 8.73 66.33 31.07 22.38 237.19 70.34 212.75

MPI-ESM-LR 11.87 14.27 11.71 21.56 3.17 26.02 34.18 18.59

MRI-CGCM3 24.97 34.43 27.12 26.09 8.94 26.16 70.00 85.93

NorESM1-M 2.17 26.86 59.74 4.10 228.15 239.07 25.49 65.74

mean 12.28 12.48 27.24 11.48 20.85 214.26 39.70 38.27

std dev 11.31 11.66 26.07 15.40 10.06 10.92 19.55 44.03

JJA

BCC-CSM1.1 214.95 220.74 22.05 28.61 220.63 230.17 210.90 216.91

CanESM2 225.72 239.23 40.26 210.17 222.26 249.66 225.63 249.05

CCSM4 27.04 3.47 23.70 0.92 7.67 25.36 4.06 239.06

CNRM-CM5 20.13 24.73 42.30 8.02 10.39 229.25 31.69 225.13

CSIRO Mk3.6.0 23.52 229.14 54.57 4.81 217.30 238.92 23.67 6.61

GFDL CM3 7.65 15.95 34.39 20.85 24.38 7.45 54.74 231.10

GFDL-ESM2M 7.35 12.03 61.15 21.49 25.20 2.66 49.86 231.24

GISS-E2-R 20.81 32.35 14.93 11.93 22.82 24.24 66.36 29.00

HadCM3 23.44 1.16 26.83 8.19 0.57 0.73 19.82 240.07

HadGEM2-ES 21.41 215.89 72.29 14.40 20.04 232.63 4.59 216.90

INM-CM4.0 4.00 21.74 43.12 31.19 17.89 219.67 44.51 244.06

IPSL-CM5A-LR 213.67 21.62 16.88 3.27 9.85 213.26 13.83 263.80

MIRCO5 3.32 0.72 38.38 23.87 10.09 217.38 36.93 213.17

MIROC-ESM 24.37 4.37 47.01 6.18 1.62 227.95 69.36 256.12

MPI-ESM-LR 9.05 11.02 37.85 19.95 14.30 8.21 10.36 214.15

MRI-CGCM3 10.98 16.85 23.16 9.44 6.35 0.48 61.05 210.33

NorESM1-M 210.01 11.48 12.31 29.71 2.99 12.31 9.47 251.51

mean 21.24 20.22 35.95 7.55 2.04 212.25 25.67 229.70

std dev 11.22 17.88 16.77 11.80 12.89 20.63 28.70 19.53
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FIG. 2. Surface air temperature climatology (8C) for (top) December–February and (bottom) June–August (1979–2005). (a) MME

mean (over the 17 core models plus FGOALS-s2) for DJF. (b) NCEP–DOE Reanalysis 2 estimate of observed surface air tem-

perature climatology for DJF. (c) As in (b), but for CRU. (d) Standard deviation of surface air temperature among the 18 model

DJF climatological values at each point. (e) Difference between the MME mean climatology in (a) and the NCEP–DOE Reanalysis

2. (f) As in (e), but for CRU. (g)–(l) As in (a)–(f), but for JJA. All observation and model data were interpolated to the same

2.58 grid.
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Figs. S1 and S2). For DJF, the intermodel standard de-

viation is less than 2.58C through most of the contiguous

United States but increases toward high latitudes, exce-

eding 3.58C over much of the area north of 608N. In JJA,

there is a region of high intermodel standard deviation,

exceeding 3.58C, roughly in the Great Plains region in the

northern United States and southern Canada. This is

a region with fairly high precipitation uncertainty in JJA

(Fig. 1f), and changes in surface temperature in this re-

gion have been linked to factors affecting soil moisture,

including preseason snowmelt (e.g., Hall et al. 2008), so

this may be a suitable target for further study to reduce

model uncertainty.

c. Seasonal sea surface temperature

The annual cycle of sea surface temperature (SST) is

shown in Fig. 3 as winter-to-spring (December–May)

and summer-to-fall (June–November) means. We also

show precipitation over land, which is generally associ-

ated with SST variations in adjoining ocean regions.

Maps for individual models are shown in supplementary

Figs. S4 and S5. The Western Hemisphere warm pool

(WHWP), where temperatures are equal or larger than

28.58C, usually is absent from December to February

and appears in the Pacific fromMarch toMay, while it is

present in the Caribbean and Gulf of Mexico from June

TABLE 4. DJF and JJA bias in CMIP5 continental and regional near-surface air temperature (8C) relative to the CRU TS3.0 obser-

vations. The mean and standard deviation of the biases across the multimodel ensemble are also given. NA is 108–728N and 1908–3058E;
CONUS is 258–508N and 2358–2858W; and the regions are ALA, NEC, ENA, CAN, WNA, and CAM, as modified from Giorgi and

Francisco (2000) and shown in supplementary Fig. S3.

Model NA CONUS ALA NEC ENA CNA WNA CAM

DJF

BCC-CSM1.1 20.97 21.98 1.95 21.61 21.29 21.30 21.88 21.20

CanESM2 2.09 2.04 1.46 3.13 4.79 4.06 0.74 20.84

CCSM4 0.01 20.53 1.81 20.30 1.03 20.22 20.37 22.04

CNRM-CM5 21.87 21.95 23.88 20.99 20.54 20.55 22.39 22.54

CSIRO Mk3.6.0 21.61 22.05 22.31 21.51 21.04 22.27 21.31 21.92

GFDL CM3 1.37 20.03 4.07 3.04 1.15 1.25 0.27 22.31

GFDL-ESM2M 1.67 20.84 5.05 5.75 1.35 0.75 20.40 23.31

GISS-E2-R 20.33 21.21 0.72 1.00 20.56 20.51 21.13 21.23

HadCM3 22.88 23.46 23.72 22.16 21.51 23.53 23.48 22.00

HadGEM2-ES 23.81 22.98 27.00 25.12 21.61 23.15 23.47 21.54

INM-CM4.0 1.71 0.26 3.73 3.38 1.87 1.48 1.51 23.71

IPSL-CM5A-LR 0.15 21.14 4.16 20.12 0.00 20.64 20.64 22.27

MIRCO5 1.02 0.65 0.74 2.14 1.78 1.16 0.27 0.39

MIROC-ESM 3.29 1.74 4.22 6.74 3.90 3.00 1.35 0.73

MPI-ESM-LR 20.08 0.30 21.85 1.50 0.64 1.28 20.93 20.10

MRI-CGCM3 20.37 20.37 1.78 22.63 21.33 0.38 0.56 22.26

NorESM1-M 20.89 21.60 2.12 22.14 20.34 21.44 21.48 21.81

mean 20.09 20.77 0.77 0.59 0.49 20.01 20.75 21.65

std dev 1.85 1.52 3.41 3.15 1.86 2.02 1.49 1.19

JJA

BCC-CSM1.1 20.76 0.54 23.24 21.40 0.16 1.80 20.78 20.20

CanESM2 3.14 4.11 1.77 3.17 3.14 5.76 3.60 0.62

CCSM4 1.10 1.37 20.13 1.55 1.21 2.04 1.78 20.82

CNRM-CM5 0.41 20.06 1.57 1.23 20.72 1.16 0.08 21.37

CSIRO Mk3.6.0 1.30 2.97 21.25 20.11 1.38 5.18 1.45 1.46

GFDL CM3 21.96 22.24 21.47 22.60 21.37 22.27 22.04 21.65

GFDL-ESM2M 20.36 20.59 20.29 0.25 20.34 20.19 20.75 20.67

GISS-E2-R 20.64 22.09 1.71 0.79 20.46 21.74 22.10 21.25

HadCM3 21.12 20.74 21.41 21.73 21.70 0.08 21.30 20.23

HadGEM2-ES 1.17 1.79 0.98 0.29 0.95 2.56 2.22 21.36

INM-CM4.0 20.82 22.07 0.78 1.23 21.68 21.02 22.05 22.52

IPSL-CM5A-LR 0.38 21.22 2.60 2.45 0.35 0.01 21.43 21.40

MIRCO5 2.63 2.30 3.88 2.56 2.15 3.11 2.79 0.26

MIROC-ESM 2.76 1.89 2.91 4.09 3.03 3.31 1.67 2.20

MPI-ESM-LR 20.84 20.66 21.31 20.40 20.81 20.09 21.55 0.02

MRI-CGCM3 20.37 21.77 2.10 1.23 20.77 20.97 21.80 22.04

NorESM1-M 21.02 20.51 23.05 20.90 20.87 20.64 0.03 21.35

mean 0.29 0.18 0.36 0.69 0.21 1.06 20.01 20.61

std dev 1.51 1.93 2.09 1.80 1.54 2.34 1.89 1.24
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to November (Wang and Enfield 2001). The cooler part

of the year is characterized by the small extension of SST

in excess of 278C and a suggestion of a cold tongue in the

eastern equatorial Pacific, while during the warmer part

of the year the extension of SSTs in excess of 278C is

maximum and the cold tongue is well defined over the

eastern Pacific. High precipitation along the Mexican

coasts, Central America, the Caribbean islands, and the

central–eastern United States are associated with the

warm tropical SSTs during the warm half of the year. A

decrease in the regional precipitation south of the

equator is also evident in this warm half of the year.

The MME mean shows the observed change in SST

from cold to warm around the WHWP region; however,

the warm pool is absent over the Caribbean and Gulf of

Mexico region. The change in precipitation from the

cold to the warm parts of the year is represented by the

MME mean including the increase in precipitation over

the central United States and Mexico as well as the de-

crease south of the equator. The eastern Pacific in the

models is slightly cooler than observations in the cold

part of the year but not in the form of weak cold tongue

from the Peruvian coast but rather as a confined equa-

torial cold zone away from the coast. The cold tongue

along the eastern equatorial Pacific and along the coast

of Peru during the warmer part of the year is reasonably

represented by theMMEmean, although its extension is

farther to the west. Differences with observations of the

multimodel mean indicate cool SST biases of theWHWP

over the Pacific and intra-American seas in all models in

both the cold andwarmparts of the year.Warmbiases are

evident close to the coasts of northeastern United States,

western Mexico, and Peru. Precipitation biases indicate

a wet/dry bias to the west/east of ;978W northward of

158NoverMexico and theUnited States during both parts

of the year (as well as the intense and extensive dry bias

over South America to the east of the Andes); the cold

bias over the intra-American seas and the dry bias over

the Great Plains in the United States suggests a link be-

tween the two, considering the former is a great source of

moisture for the latter.

A set of error statistics for the mean annual SSTs are

summarized in Table 5 for the individual CMIP5 models

and theMMEmean. The spatial correlations are.0.9 for

all models, and are not able to quantitatively distinguish

the performance of the models. The MME mean maxi-

mizes the spatial correlation (0.97) and minimizes the

RMSE (0.778C) but not the bias (20.548C). Eight of the
models have RMSE values less than 18C, and the largest

biases (.1.38C) are for CSIRO Mk3.6.0, HadCM3,

FIG. 3. Climatological sea surface temperature and precipitation in observations from the Hadley Centre Sea Ice and Sea Surface

Temperature dataset, version 1.1 (HadISSTv1.1) andGPCPv2.2 datasets and historical simulations from 17CMIP5models for 1979–2004.

(a) Observations, (b) MME mean, and (c) MME mean minus observations, for winter to spring (December–May). (d)–(f) As in (a)–(c),

but for summer to fall (April–November). Temperatures are shaded blue (red) for values equal or lower (larger) than 238C (248C); the
thick black line highlights the 28.58C isotherm as indicator of theWesternHemisphere warm pool. Precipitation is shaded green for values

equal or larger than 2mmday21. Contour intervals are 18C and 1mmday21 for the mean values and 0.28C and 2mmday21 for the

differences. The SST (precipitation) field was regridded to a common 58 3 2.58 (2.58 3 2.58) grid.
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INM-CM4.0, IPSL-CM5A-LR, and MIROC-ESM. The

biases, except for INM-CM4.0 and CCSM4, are negative,

with the smallest bias for INM-CM4.0, and the largest for

CSIRO Mk3.6.0.

d. Seasonal atmospheric and land water budgets

Wenext evaluate the climatologies of the atmospheric

and land water budgets. Seasonal changes in atmo-

spheric water content are relatively small compared to

the moisture fluxes and so we focus on the latter. Vari-

ations in moisture divergence are generally correlated

with seasonal precipitation and so may help explain

biases in model precipitation. The vertically integrated

moisture transport (vectors) and its divergence (con-

tours) are shown in Fig. 4 for five CMIP5 models (the

number ofmodels was limited by the availability of high-

temporal-resolution model data required to calculate

the moisture fluxes) and observational estimates from

the Twentieth-Century Reanalysis (20CR) for mean JJA

and DJF for 1981–2000. In summer, the 20CR shows

southerly transport from the North Atlantic anticyclone

that splits into two distinct branches: one flanking the

Atlantic seaboard with large-scale convergence off the

East Coast and a second branch of moisture flows into

the interior central plains, which is associated with con-

vergence over theRockyMountains. ThewesternUnited

States is dominated by divergence associated with the

northerly component of theNorth Pacific anticyclone. The

five models show the two branches of moisture transport,

with associated convergence off the East Coast and di-

vergence in the plains, albeit weaker. They also simulate

the divergence in much of the west, but they do not

simulate the strong convergence over the Rockies and

Mexican Plateau as seen in 20CR, which is associated

with the low bias in precipitation over these regions

(Table 3; mean biases for the fivemodels shown here are

219.8% and 231.5% for the CNA and CAM regions,

respectively). Spatial correlations for divergence in the

North American region range from 0.08 to 0.42, with

MIROC5 and CNRM-CM5 performing the best out of

the five models according to this measure (Table 6). In

winter, the 20CR shows a more zonal transport than

during summer, with weaker flow around the subtropical

anticyclones and moisture convergence across much of

the continent. The models represent both the moisture

transport and divergence patterns well including the

stronger convergence in the Pacific Northwest and

Northern California and divergence in Southern Cal-

ifornia, although the magnitude of divergence is too

strong along the coasts, most notably for the CCSM4

and CNRM-CM5 models, and precipitation over west-

ern North America is overestimated by all five models

examined here (WNA and ALA regions; Table 3), es-

pecially for the CCSM4. The improvement in winter over

summer for the whole domain is evident in the spatial

correlations, which range between 0.60 and 0.76 for

winter, with a different set of models performing better

than in summer (CanESM2, CCSM4, and CNRM-CM5;

Table 6).

Evaluations of the model simulated terrestrial water

budget are shown in Figs. 5 and 6 against the offline land

surface model (LSM) simulations. Figure 5 shows the

regional mean seasonal cycles of the components of the

land surface water budget (precipitation, evapotranspi-

ration, runoff, and change in water storage). In reality,

water storage includes soil moisture; surface water such

as lakes, reservoirs, and wetlands; groundwater; and

snowpack, but in general the climate models only simu-

late the soilmoisture and snowpack components. Figure 5

also separates out the snow component of the water bud-

get in terms of the snow water equivalent (SWE). Most

models have a reasonable seasonal cycle of precipitation

and evapotranspiration but tend to overestimate pre-

cipitation in the more humid and cooler regions (WNA,

ENA, ALA, and NEC) as noted previously and over-

estimate evapotranspiration throughout the year and

especially in the cooler months. Runoff is generally un-

derestimated, particularly in the CNA and ENA regions

and in NEC and CAM. It also peaks earlier in the spring

in somemodels (which can be linked to a shortened snow

TABLE 5. CMIP5 error statistics for annual average SSTs. The

mean and standard deviation of the statistics across themultimodel

ensemble are given, as well as the statistics of theMMEmean SSTs.

Statistics are calculated over neighboring oceans to NorthAmerica

(1708–358W, 108S–408N; domain displayed in Fig. 3) for average

annual values for 1979–2004.

Model Spatial correlation RMSE (8C) Bias (8C)

BCC-CSM1.1 0.95 0.98 20.15

CanESM2 0.97 0.87 20.16

CCSM4 0.96 0.88 0.37

CNRM-CM5.1 0.96 0.94 20.63

CSIRO Mk3.6.0 0.94 1.39 21.80

GFDL CM3 0.94 1.05 20.68

GFDL-ESM2M 0.94 1.08 20.46

GISS-E2-R 0.95 0.98 20.15

HadCM3 0.94 1.53 20.64

HadGEM2-ES 0.96 0.95 20.96

INM-CM4.0 0.94 1.06 20.01

IPSL-CM5A-LR 0.93 1.32 20.78

MIROC5 0.95 0.95 20.65

MIROC-ESM 0.91 1.32 20.60

MPI-ESM-LR 0.96 0.95 20.49

MRI-CGCM3 0.95 1.25 20.49

NorESM1-M 0.92 1.21 20.78

mean 0.95 1.10 20.54

std dev 0.02 0.20 0.47

MME mean 0.97 0.77 20.54
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season; see below), although the models generally repli-

cate the spatial variability in annual total runoff (Fig. 6

and Fig. S6 in the supplementary material). The ma-

jority of models overestimate total runoff over dry re-

gions and high latitudes, particularly for the Pacific

Northwest and Newfoundland. SWE is generally over-

estimated by the multimodel ensemble for western North

America, underestimated in the east, and overestimated

in the Alaskan and western Canada region, which are a

reflection of the precipitation biases. These biases are

also reflected in the change in storage, particularly for the

Alaska region where many of the models show a large

negative change during late spring melt due to over-

estimation of SWE.

Figure 6 (Fig. S6 for individual models) also shows

the runoff ratio (runoff divided by precipitation) over

North America, which indicates the production of water

at the land surface that is subsequently potentially

available as water resources. The remaining precipi-

tation is partitioned into evapotranspiration (assuming

that storage does not change much over long time pe-

riods). Overall the MME mean replicates the spatial

pattern from the observational estimate with higher

ratios in humid and cooler regions, and lower ratios in

dry regions. However, the MME mean tends to under-

estimate the ratios, especially for central North America

and Central America but overestimates the ratio in

Alaska (Table 7). For North America overall, the models

FIG. 4. Vertically integrated moisture transport (vectors) and its divergence (contours) for (a),(g) the 20CR and five CMIP5 models for

mean (b)–(f) JJA and (h)–(l) DJF for 1981–2000. Vertically integratedmoisture transport is computed to 500 hPa using 6-hourly data from

the 20CR and one realization each from the historical experiments for the CanESM2, CCSM4, CNRM-CM5, GFDL-ESM2M, and

MIROC5 models. The model data are shown at their original resolution.
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tend to underestimate the ratios. The biases in runoff are

better explained by biases in runoff ratios rather than

biases in precipitation (not shown), especially in higher

latitudes, highlighting the importance of the land surface

schemes in the climatemodels andwhether they are able to

realistically partition precipitation into runoff and evapo-

transpiration and accumulate and melt snow.

4. Continental extremes and biophysical indicators

This next section examines the performance of the

models in representing observed temperature and hy-

drological extremes. We first focus on temperature ex-

tremes and temperature dependent biophysical indicators

and then persistent seasonal hydrological extremes for

precipitation and soil moisture. Regional extremes in

temperature and precipitation are evaluated in section 5.

a. Temperature extremes and biophysical indicators

Temperature extremes have important consequences

for many sectors including human health, ecosystem

function, and agricultural production. We evaluate the

models’ ability to replicate the observed spatial distri-

bution overNorthAmerica of the frequency of extremes

(Fig. 7) for the number of summer days with maximum

temperature (Tmax).258C and the number of frost days

with minimum temperature (Tmin) ,08C (Frich et al.

2002) and a set of biophysical indicators related to tem-

perature: spring and fall freeze dates and growing season

length. We define the growing season length following

Schwartz and Reiter (2000), which is the number of days

between the last spring freeze of the year and the first

hard freeze of the autumn in the same year. A hard freeze

is defined as when the daily minimum temperature drops

below 228C.
Overall, the models tend to underestimate the num-

ber of summer days by about 18 days over North

America (Table 8), with regional underestimation of

over 50 days in the western United States and Mexico

and parts of the eastern United States, but otherwise are

within 20 days of the observations for most other re-

gions. Several models (CanESM4, CCSM4, CNRM-CM5,

MIROC, and MIROC-ESM) overestimate the number

of summer days from the northeastern United States up

to the Canadian northern territories but tend to have

smaller underestimation in the westernUnited States and

Mexico (see supplementary Fig. S7). Nearly all other

models have low biases of up to 50 days in these drier

regions, which, at least for thewesternUnited States, may

be related to overestimation of precipitation and evapo-

transpiration (as shown in section 3d) and thus a re-

duction in sensible heating of the atmosphere. Several

models have small biases for North America as a whole

(Table 8) but often because large regional biases cancel

out and only the BCC-CSM1.1, CSIRO Mk3.6.0, and

HadGEM2-ES models have reasonably low biases (,30

days) across all regions. The first two of these models also

have relatively low runoff ratio biases for the WNA and

central North American (CNA) regions (HadGEM2-ES

was not evaluated for surface hydrology), suggesting that

their simulation of warm summer days is not impeded by

biases in the surface energy budget. The number of frost

days is better simulated in terms of overall MME mean

bias (22.8 days), but there is a positive bias across the

Canadian Rockies and down into the U.S. Rockies for

mostmodels, suggesting that themodels’ generally coarse

resolution and differences in topographic heights are

partly responsible (see supplementary Fig. S8). Some of

themodels are biased low in the central United States by

over 50 days. Models with the least bias in frost days also

tend to be the least biased models for summer days, but

againmany of the regional biases cancel out for theNorth

America values.

Themodels do reasonably well at depicting the spatial

distribution of growing season length (MMEmean bias5
28.5 days over North America). The largest biases of

between 30–50 days are in western Canada where the

models underestimate and in the central United States

where they overestimate. The former is mainly because

the last spring freeze is too late in western Canada and

for the latter because of biases in both the last spring

freeze (too early) and the first autumn freeze (too late).

The INM-CM4.0 model has the largest bias overall (276

days), which is consistent overmost of the continent (see

TABLE 6. Spatial correlations between simulated and observed

estimates of column integrated moisture divergence for summer

(JJA) and winter (DJF) seasons for the North American region.

The CMIP5 model data were regridded to the 20CR grid

(;200 km) for this calculation. Themean and standard deviation of

the correlations across the multimodel ensemble are also given.

Model Spatial correlation

Summer (JJA)

CanESM2 0.28

CCSM4 0.18

CNRM-CM5 0.39

GFDL-ESM2M 0.08

MIROC5 0.42

mean 0.27

std dev 0.14

Winter (DJF)

CanESM2 0.76

CCSM4 0.72

CNRM-CM5 0.75

GFDL-ESM2M 0.66

MIROC5 0.60

mean 0.70

std dev 0.07
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Fig. S9). The MIROC5 and MIROC-ESM models have

the largest overestimations of 33 and 38 days, respectively,

and these biases are also consistent over much of the

continent.

b. Hydroclimate extremes

We examine the ability of CMIP5 models to simulate

persistent drought and wet spells in terms of precip-

itation and soil moisture (SM). We focus on the United

States because of the availability of long-term estimates

of SM from theUniversity ofWashingtonNorthAmerican

Land Data Assimilation System (NLDAS-UW) dataset.

Meteorological drought and wet spells are characterized

by the 6-month standardized precipitation index (SPI6;

McKee et al. 1993). Agricultural drought and wet spells

are evaluated in terms of soil moisture percentiles (Mo

2008). The record length Ntotal is defined as the total

months from all ensemble simulations of a model or the

total months of the observed dataset. At each grid point,

an extreme negative (positive) event is selected when

the SPI6 index is below (above) 20.8 (0.8) for a dry

(wet) event (Svoboda et al. 2002). For SM percentiles,

the threshold is 20% (80%) for a dry (wet) event. At each

grid cell, the number ofmonths that extreme events occur

N is 20% of the record length by construct (N/Ntotal 5
20%). Because a persistent drought event (wet event)

usually means persistent dryness (wetness), a drought

(wet) episode is selected when the index is below/above

this threshold for three consecutive seasons (9 months)

or longer. The frequency of occurrence of persistent

FIG. 5. Mean seasonal cycle (1979–2005) of North American regional land water budget components for 12 CMIP5 models (CanESM2,

CSIROMk3.6.0, GFDL-ESM2G, GISS-E2-H, GISS_E2-R, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-ESM, MIROC-ESM-CHEM,

MPI-ESM-LR, MRI-CGCM3, and NorESM1-M) compared to the average of the two offline LSM simulations [Variable Infiltration

Capacity (VIC) and Global Land Data Assimilation System (GLDAS2) Noah]. Regions are western North America, central North

America, eastern North America, Alaska and western Canada, northeast Canada, and Central America as modified from Giorgi and

Francisco (2000) and shown in supplementary Fig. S3. All data were interpolated to 2.58 resolution.
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drought or wet spells (FOC) is defined as FOC5 Np/N,

whereNp is the number of months that an extreme event

persists for 9 months.

Figures 8 and 9 show the FOC averaged for persistent

wet and dry events for SPI6 and SM, respectively, for 15

of the coremodels (the GFDL-ESM2M and INM-CM4.0

model datasets only had a single ensemble member and

the total record is therefore too short for the analysis).

The most noticeable feature is the east–west contrast of

the FOC for both SPI6 and SM as driven by the gradient

in precipitation amount and variability (Mo and Schemm

2008). Persistent drought and wet spells are more likely

to occur over the western interior region, while extreme

events are less likely to persist over the eastern United

States and the West Coast. The maxima of the FOC are

located in two bands, one located over the mountains

and one extending from Oregon to Texas (Fig. 8a).

Persistent events are also found over the Great Plains.

The CanESM2, CCSM4, and MIROC5 models show the

east–west contrast, although the magnitudes of FOC are

too weak for the CanESM2 model. The center of maxi-

mum FOC for MIROC5 is too far south.

Table 9 shows the performance of the models in rep-

resenting the east–west contrast in terms of a FOC index

defined as the difference in the fraction of grid cells with

FOC greater than a given threshold between thewestern

(328–488N, 928–1128W) and eastern (328–488N, 708–928W)

regions. The thresholds are 0.2 for SPI and 0.3 for

SM. The FOC index values for the CCSM4 (0.35) and

MIROC5 (0.34) models are closest to the observations

(0.37) for SPI6. The MPI-ESM-LR model also shows

the east–west contrast with one maximum located over

Utah and another over the Great Plains, but the second

maximum is too spatially extensive. The MIROC-ESM,

MRI-CGCM3, and NorEMS1-M models all show a

band of maxima over the Southwest, but the FOC north

of 358N is too weak. Other models such as CSIRO

Mk3.6.0, IPSL-CM5A-LR, CNRM-CM5, GISS-E2-R,

and GFDL CM3 have the maxima located over the Gulf

region, which is too far south. Finally, the HadCM3 and

HadGEM2-ES (not shown) models do not have enough

persistent events.

For SM (Fig. 9), the FOC from theNLDAS-UWshows

that persistent anomalies are located west of 908W over

the western interior region, with a FOC index of 0.68.

Many of the models, such as BCC-CSM1.1, HadCM3, and

IPSL-CM5A-LR, do not have enough persistent events,

and the CanESM2, GISS-E2-R, and MRI-CGCM3

FIG. 6. (top) Mean annual runoff (mmyr21) and (bottom) runoff ratio Q/P for 1979–2004 from observations

(Q from VIC and GLDAS2 Noah and P from GPCP) and the multimodel average from 15 CMIP5 climate models

(BCC-CSM1.1, CanESM2, CCSM4, CNRM-CM5, CSIRO Mk3.6.0, GFDL CM3, GFDL-ESM2M, GISS-E2-R,

HadCM3, INM-CM4.0, MIROC5, MIROC-ESM, MPI-ESM-LR, MRI-CGCM3, and NorESM1-M). All data were

interpolated to 2.58 resolution.
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models shift the maxima to the central United States.

The CCSM4, GFDLCM3, and NorESM1-Mmodels fail

to replicate the east–west contrast because of their high

FOC values throughout most of the United States. The

bestmodel for SM is theMPI-ESM-LRwith a FOC index

of 0.62, because it represents the east–west contrast and

also has realistic magnitudes. The CSIROMk3.6.0 model

also simulates the east–west contrast, but themaximum is

located south of the NLDAS-UW analysis maximum.

5. Regional climate features

We next evaluate the CMIP5 models for a set of re-

gional climate features that have important regional

consequences, either directly such as extreme tempera-

ture and precipitation in the southern United States

and the North American monsoon or indirectly such as

western Atlantic cool season cyclones and the U.S. Great

Plains low-level jet. The last analysis examines the sim-

ulation of Arctic sea ice, which is important locally but

also has implications for North American climate and

elsewhere (Francis and Vavrus 2012).

a. Cool season western Atlantic extratropical cyclones

Extratropical cyclones can have major impacts (heavy

snow, storm surge, winds, and flooding) along the east

coast of North America given the proximity of the

western Atlantic storm track. The Hodges (1994, 1995)

cyclone tracking scheme was implemented to track cy-

clones in 15 models (of which 12 were in the core set) for

the cool seasons (November–March) for 1979–2004. The

Climate Forecast System Reanalysis (CFSR) was used

to estimate observed cyclone tracks. Six-hourly mean sea

level pressure (MSLP) data were used to track the cy-

clones, since it was found that including 850-hPa vor-

ticity tracking yielded toomany cyclones. SinceMSLP is

strongly influenced by large spatial scales and strong

background flows, a spectral bandpass filter was used to

preprocess the data. Those wavelengths between 600 and

10000km were kept, and the MSLP pressure anomaly

had to persist for at least 24h and move at least 1000km.

Colle et al. (2013) describes the details of the tracking

approach and validation of the tracking procedure.

Figure 10 shows the cyclone density during the cool

season for the CFSR, mean and spread of the 15 models

(see the legend of Fig. 11 for a complete listing), and

select models for eastern North America and the west-

ern and central North Atlantic. There is a maximum in

cyclone density in the CFSR over the Great Lakes, the

western Atlantic from east of the Carolinas northeastward

to east of Canada, and just east of southern Greenland

(Fig. 10a). The largestmaximumover the westernAtlantic

(6–7 cyclones per cool season per 50000km2) is located

along the northern boundary of the Gulf Stream Current.

The MME mean is able to realistically simulate the three

separate maxima locations (Fig. 10b), but the amplitude is

10%–20% underpredicted. The cyclone density maxi-

mum over the western Atlantic does not conform to the

boundary of the Gulf Stream as much as observed. There

is a large intermodel spread near the Gulf Stream, since

somemodels are able to better simulate western Atlantic

density amplitude, such as the CCSM4 and HadGEM2-

CC (Figs. 10e,f).However, theCCSM4maximum is shifted

a few hundred kilometers to the north.

TABLE 7. Bias (modelminus observational estimates) in annual runoff ratio (total runoff/precipitation) averaged over 1979–2004 for the

North American continent, the contiguous United States, and the six regions defined in Table 3. The mean and standard deviation of the

statistics across themultimodel ensemble are also given. Observed runoff is estimated fromVIC andGLDAS2Noah; precipitation is from

GPCP. All data were interpolated to 2.58 resolution.

Model NA CONUS ALA NEC ENA CNA WNA CAM

BCC-CSM1.1 0.09 0.06 0.36 20.10 20.04 20.03 0.11 0.21

CanESM2 0.04 20.04 0.38 0.01 20.08 20.10 0.09 20.23

CCSM4 20.01 20.11 0.45 20.04 20.12 20.20 0.03 20.20

CNRM-CM5 0.01 20.04 0.23 20.04 20.04 20.14 0.08 20.12

CSIRO Mk3.6.0 20.07 20.11 0.23 20.18 20.15 20.15 20.09 20.09

GFDL CM3 20.03 20.06 0.17 20.08 20.06 20.13 0.01 20.19

GFDL-ESM2M 20.04 20.05 0.06 20.17 20.07 20.15 0.02 20.05

GISS-E2-R 20.14 20.11 20.16 20.27 20.15 20.17 20.08 20.15

HadCM3 0.00 20.01 0.27 20.01 0.00 0.00 20.03 20.32

INM-CM4.0 0.01 20.09 0.34 0.00 20.10 20.18 0.05 20.24

MIROC5 20.03 20.09 0.27 20.06 20.03 20.14 20.06 20.12

MIROC-ESM 0.00 20.05 0.25 20.06 0.01 20.18 0.02 20.25

MPI-ESM-LR 20.05 20.09 0.25 20.09 20.10 20.12 20.04 20.24

MRI-CGCM3 0.06 0.02 0.33 0.00 0.03 20.03 0.06 20.07

NorESM1-M 20.01 20.12 0.46 20.04 20.13 20.20 20.01 20.20

mean 20.01 20.06 0.26 20.07 20.07 20.13 0.01 20.15

std dev 0.06 0.05 0.16 0.08 0.06 0.06 0.06 0.12

1 DECEMBER 2013 SHEFF I E LD ET AL . 9225



The distribution of cyclone central pressures at their

maximum intensity were also compared (Fig. 11) be-

tween the CFSR,MMEmean, and individual models for

the dashed box region in Fig. 10b. There is a peak in

cyclone intensity in both the CFSR and MME mean

around 900–1000 hPa, and there is large spread in the

model intensity distribution by almost a factor of 2. The

ensemble mean realistically predicts the number of av-

erage strength to relatively weak cyclones; however, the

intensity distribution is too narrow compared to the

CFSR, especially for the deeper cyclones ,980 hPa.

Colle et al. (2013) verified the 15 models by calculat-

ing the spatial correlation and mean absolute errors of

the cyclone track densities and central pressures. They

ranked the models and showed that six of the seven best

models were the higher-resolution models (top three:

EC-Earth, MRI-CGM3, and CNRM-CM5), since many

lower-resolution models, such as GFDL-ESM2M (Fig.

10d), underpredict the cyclone density and intensity.

The MME mean calculated using the 12 core models

has verification scores within 5% of those from all 15

models (not shown), so it is likely that using all 17 core

models in the cyclone analysis would not have much

impact on the results.

b. Northeast cool season precipitation

We next examine regional precipitation in the highly

populated northeast United States, which is expected to

increase in the future (Part III). The focus is on the cool

season, since extratropical cyclones provide much of the

heavy precipitation in the northeast. Of the 17 core

models (listed in Fig. 11), 14 models (daily precipitation

data were not available for 3 models) were evaluated for

the cool seasons (November–March) of 1979–2004. The

FIG. 7. Comparison of biophysical indicators between observations and the CMIP5 ensemble. Biophysical indicators are (top) number

of summer days, (middle) number of frost days, and (bottom) growing season length averaged over 1979–2005. (left) The observations

from the Hadley Centre Global Historical Climatology Network (HadGHCND) dataset; (middle) the multimodel ensemble mean of the

17 coremodels; and (right) their difference (MME2 obs). The frequencies were calculated on themodel grid and then interpolated to 2.08
resolution for comparison with the observational estimates.
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model daily precipitation was compared with the Climate

Prediction Center (CPC)-Unified daily precipitation at

0.58 and CPCMerged Analysis of Precipitation (CMAP)

monthly precipitation at 2.58 resolution.
Figures 12a–c shows the seasonal average precip-

itation for the two observational analyses and the MME

meanand spread.Theheaviest precipitation (700–1000mm)

is over the Gulf Stream, which is associated with the west-

ernAtlantic storm track. This maximum is well depicted

in the multimodel mean, although it is underestimated

by 50–200mm and there is a moderate spread between

models (100–200mm). The precipitation over the north-

eastUnited States ranges from375mm in the northwestern

part to around 500mm at the coast. The finer-resolution

CPC-Unified analysis has more variability downstream

of the Great Lakes (lake effect snow) as well as some

terrain enhancements. The models cannot resolve these

smaller-scale precipitation features, but theMMEmean

realistically represents the north to south variation.

However, the MME mean overestimates precipitation

by 25–75mm (5%–20%) over northern parts. Much

of this overestimation is for thresholds greater than

5mmday21 over land. (Fig. 12d). The seasonal precip-

itation MME spread over the northeast is 100–150mm

(25%–40%), and much of this spread is reflected in the

higher (.10mmday21) thresholds, with theBCC-CSM1.1

simulating less than the CPC-Unified analysis and a

cluster of models, such as the INM-CM4.0 andMIROC5,

having many more heavy precipitation events than ob-

served.

Themodel precipitation was verified against the CPC-

Unified analysis for the black box region over the

northeast United States shown in Fig. 12b, and the models

are ranked in terms of their mean absolute errors (MAE)

(Table 10). TheMMEmean has the lowest MAE. There

is little relationship with resolution, since some rela-

tively higher-resolution models (e.g., MIROC5 and

MRI-CGCM3) perform worse than many other lower-

resolution models. Most models have a 5%–15% high

bias in this region. There is little correlation (;0.22)

between the high biases in precipitation in this region

and the cyclone overestimation along the U.S. East Coast,

thus suggesting the cyclone biases are coming from other

processes than diabatic heating errors from precipitation.

c. Extreme temperature and rainfall over the southern
United States

The southern regions of the United States are histor-

ically prone to extreme climate events such as extreme

summer temperatures, flood and dry spells. Previous

CMIP and U.S. climate impact assessments (Karl et al.

2009) have projected a large increase of these extreme

events over regions of the south [southwest (SW), south

central (SC), southeast (SE)], especially for the SW and

SCUnited States. However, towhat extent climatemodels

can adequately represent the statistical distributions of

TABLE 8. Bias and spatial correlation between the HadGHCND observations and the CMIP5 ensemble for number of summer days,

number of frost days, and growing season length averaged over 1979–2005. The mean and standard deviation of the statistics across the

multimodel ensemble are given, as well as the statistics of the MME mean. The frequencies were calculated on the model grid and then

interpolated to 2.08 resolution for comparison with the observational estimates.

No. of summer days No. of frost days Growing season length (days)

Model Bias (days) Spatial correlation Bias (days) Spatial correlation Bias (days) Spatial correlation

BCC-CSM1.1 214.0 0.95 24.7 0.96 27.8 0.91

CanESM2 17.1 0.96 216.4 0.93 212.1 0.90

CCSM4 0.0 0.88 23.5 0.95 29.0 0.92

CNRM-CM5 27.4 0.92 12.6 0.92 214.2 0.89

CSIRO Mk3.6.0 28.2 0.98 3.7 0.95 24.3 0.90

GFDL CM3 239.5 0.93 0.6 0.97 224.6 0.93

GFDL-ESM2M 33.0 0.92 27.8 0.96 25.6 0.92

GISS-E2-R 33.5 0.94 212.8 0.96 7.4 0.96

HadCM3 221.9 0.98 21.6 0.95 238.2 0.88

HadGEM2-ES 26.9 0.92 2.2 0.97 214.9 0.95

INM-CM4.0 228.8 0.94 17.0 0.85 276.1 0.53

IPSL-CM5A-LR 239.3 0.85 4.1 0.97 26.5 0.95

MIROC5 1.3 0.91 215.1 0.98 33.4 0.96

MIROC-ESM 25.7 0.90 234.7 0.97 38.5 0.96

MRI-CGCM3 234.8 0.87 26.8 0.95 4.0 0.95

MPI-ESM-LR 230.4 0.92 212.5 0.94 5.5 0.93

NorESM1-M 221.6 0.89 23.7 0.96 219.7 0.93

mean 210.21 0.92 23.31 0.95 28.5 0.90

std dev 22.56 0.04 13.56 0.03 25.65 0.10

MME mean 218.1 0.96 22.8 0.97 28.5 0.95
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FIG. 8. The frequency of occurrence of persistent extreme precipitation events defined by SPI6 averaged over positive and negative events

for (a) observed precipitation based on the CPC and UW datasets, (b) BCC-CSM1.1, (c) CanESM2, (d) CCSM4, (e) CNRM-CM5.1,

(f) CSIROMk3.6.0, (g)GFDLCM3, (h)GISS-E2-R, (i)HadCM3, ( j) IPSL-CM5A-LR, (k)MIROC5, (l)MIROC-ESM, (m)MPI-ESM-LR,

(n) MRI-CGCM3, and (o) NorESM1-M. The HadCM3 and HadGEM2-ES results are similarly weak and so the former are shown only.

Each dataset is treated as one member of the ensemble and frequencies were calculated at the resolution of the dataset.
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FIG. 9. As in Fig. 8, but for persistent soil moisture events. Estimates of observed soil moisture are taken from the multimodel

NLDAS-UW dataset.
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these extreme events over these regions is still unclear.

Figure 13 compares the model simulated precipitation

and temperature with observations as Taylor diagrams

for 1) the annual number of heavy precipitation days

(precipitation. 10mmday21) and 2) the number of hot

days [Tmax. 328C (908F)]. The observations are derived
from theGHCNdaily Tmax andTmin gauge data and the

CPC United States–Mexico daily gridded precipitation

dataset. Results are shown for 15 models, 11 of which are

core models, in terms of the spatial correlation with the

observations and standard deviation normalized by the

observations. Table 11 also shows the regional biases.

Overall, the spatial distribution of the number of

heavy precipitation days is better simulated in the SW

and SC than the SE, for which the spatial correlations

are below 0.5, with many models having negative cor-

relations. The normalized standard deviations are less

than observed indicating that the models cannot capture

the high spatial variability in this region. Part of the reason

for this may be the severe underestimation of number of

tropical cyclones (Part II), although other factors are

likely involved such as the biases in summertime convec-

tive precipitation. For the SW and SC regions, the models

do reasonably well at replicating the spatial variation

although with some spread across models (correlation

values of 0.56–0.91 and 0.59–0.97 for the SW and SC,

respectively). The MME mean simulated number of

heavy precipitation is biased slightly high for the SW

(but note that the observed number of days, 8.5, is small)

and low for the SC and SE. For individual models, the

GISS-E2-R model has a large high bias in the SW and

the CanESM2, GFDL CM3, HadCM3, IPSL-CM5A-

LR, and MIROC5 models have large low biases (.10

days) in the SC and SE. Several models do reasonably

well for all regions (GFDL-ESM2G, GFDL-ESM2M,

HadGEM2-CC,HadGEM2-ES,MIROC4h,MPI-ESM-

LR, and MRI-CGCM3) in terms of their biases.

Thenumberof hotdays (Tmax. 328C) is underestimated

by the MME mean for all regions by between about 12

and 19 days, which is consistent with the underestimation

of summer days (Tmax. 258C) shown for NorthAmerica

in Fig. 7. Again the performance of the models in terms

of spatial patterns and variability, and regional bias is

generallyworse for the SE. Interestingly, the threeHadley

Center models considered here (HadCM3, HadGEM2-

CC, and HadGEM2-ES) have the lowest biases for the

SWand SC (except for theCCSM4) and in the SE (except

for theMIROCmodels). Themodels tend to overestimate

the spatial variability in the SW and underestimate it the

SE and the spatial correlations for the SW . SC . SE.

The MIROC4h, which is a very-high-resolution model

(0.568 grid), stands out for all regions and both variables

as having high spatial correlation and low bias for heavy

precipitation days, although it generally has too high

spatial variability relative to the observations.

d. North American monsoon

The North American monsoon (NAM) brings rainfall

to southern Mexico in May, expanding northward to

the southwest United States by late June or early July.

Monsoon rainfall accounts for roughly 50%–70% of the

annual totals in these regions (Douglas et al. 1993; Adams

andComrie 1997), with the annual percentages decreasing

northward where winter rains become increasingly im-

portant. The annual cycle of precipitation from the

ITCZ through the NAM region is examined in Fig. 14.

The MME mean from the 17 core models (averaged for

longitudes 102.58–1158W for 1979–2005) replicates the

northwardmigration of precipitation in theNAMregion

during the warm season but is biased low. However, the

MMEmean precipitation begins later, ends later, and is

stronger than the observed estimate from CMAP within

the core monsoon region north of 208N. Within the lat-

itudes of the ITCZ (up to 128N), the models strongly

underestimate the precipitation and fail to show the

northward migration from stronger precipitation inMay

south of 88N to a maximum in July near 108N. Instead,

the models tend to place the spring maximum at 108N
and have a late buildup and late demise at all latitudes of

the ITCZ through boreal summer. Table 12 shows the

RMSE for individual models over the domain shown

in Fig. 14 and indicates that the CanESM2, HadCM3,

and HadGEM2-ES models have the lowest errors

TABLE 9. Frequency of occurrence of persistent extreme pre-

cipitation and soil moisture events over the United States for the

CPC observations/NLDAS analysis and 15 CMIP5 models. The

mean and standard deviation of the statistics across themultimodel

ensemble are also given.

Model SPI6 SM

Obs/Analysis 0.37 0.68

BCC-CSM1.1 0.00 0.05

CanESM2 0.29 0.32

CCSM4 0.35 0.14

CNRM-CM5.1 0.16 0.30

CSIRO Mk3.6.0 0.02 0.70

GFDL CM3 0.02 0.01

GISS-E2-R 0.04 0.47

HadCM3 0.00 0.32

HadGEM2-ES 0.00 0.37

IPSL-CM5A-LR 0.21 0.20

MIROC5 0.34 0.25

MIROC-ESM 0.26 0.27

MPI-ESM-LR 0.23 0.62

MRI-CGCM3 0.16 0.01

NorESM1-M 0.01 0.08

mean 0.14 0.27

std dev 0.13 0.21
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(,0.75mmday21) and the BCC-CSM1.1, NorESM1-M,

andMRI-CGCM3have thehighest errors (.1.9mmday21).

The seasonal cycle of monthly precipitation in the core

NAM region of northwest Mexico (23.8758–28.8758N,

108.8758–104.8758W) is also examined in Table 13 and

Fig. 15 for the core models plus four other models. Our

core domain is similar to that used by the North Ameri-

can Monsoon Experiment (NAME; Higgins et al. 2006)

and related studies (e.g., Higgins andGochis 2007; Gutzler

et al. 2009) but has been reduced in size to ensure con-

sistency of the monsoon precipitation signal at each grid

point. Following the methodology of Liang et al. (2008)

for analysis of CMIP3 data, we calculate a phase and

RMS error of each model’s seasonal cycle, where the

phase error is defined as the lag in months with the best

correlation to theobservations (Table 13).Theobservations

FIG. 10. (a) Cyclone density for the CFSR analysis showing the number of cyclones per cool season (November–

March) per 50 000 km2 for 1979–2004. (b) As in (a), but for the MME mean (shaded) and spread (contoured every

0.3) of 15 CMIP5 models ordered from higher to lower spatial resolution: CanESM2, EC-EARTH, MRI-CGCM3,

CNRM-CM5,MIRCO5,HadGEM2-ES,HadGEM2-CC, INM-CM4.0, IPSL-CM5A-MR,MPI-ESM-LR,NorESM1-M,

GFDL-ESM2M, IPSL-CM5A-LR, BCC-CSM1, and MIROC-ESM-CHEM. (c)–(f) As in (a), but for the (c) MPI-

ESM-LR, (d) GFDL-ESM2M, (e) HadGEM2-CC, and (f) CCSM4models. The cyclone densities were calculated on

the native grid of the dataset.
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used are the NOAA precipitation dataset (P-NOAA),

which is a recently developed gauge-based dataset that

is likely more accurate than the CMAP for this region.

We additionally calculate each model’s annual bias as a

percentage of themeanmonthly climatological P-NOAA

value (1.66mmday21). The seasonal cycles for models

with small (lag5 0), moderate (lag5 1) and large (lag5
2–4) phase errors are shown in Figs. 15a–c. Figure 15d

shows the MME mean for all phase errors, their spread,

and the observations.

Overall the small phase error models tend to over-

estimate rainfall in the core NAM region compared to

the two observational datasets throughout the year, with

the largest errors seen in fall, consistent with Fig. 14. The

overestimation of rainfall by the models beyond the end

of the monsoon season is also apparent in the small and

large phase error CMIP3models (Liang et al. 2008). The

similarity between the range of RMSE values (0.46–

2.23mmday21) in their study of CMIP3 models and that

of the CMIP5 models in this analysis indicates that there

has been no improvement in the magnitude of the sim-

ulated annual cycle of monthly precipitation, with the

lowest and highest RMSE values having increased

slightly since the previous generation of models. On the

other hand, there does seem to be improvement in the

timing of seasonal precipitation shifts, with 13 out of 21

(62%) CMIP5 models having a phase lag of zero months

FIG. 11. Number of cyclone central pressures at their maximum

intensity (minimum pressure) for the 1979–2004 cool seasons

within the dashed box region in Fig. 10 for a 10-hPa range centered

every 10 hPa showing the CFSR (bold blue), CMIP5 MME mean

(bold red), and individual CMIP5 models.

FIG. 12. (a) CPC merged precipitation analysis at 2.58 resolution showing cool seasonal average precipitation

(shaded every 75mm) for the 1979–2004 cool seasons (November–March). (b) As in (a), but for the CPC-Unified

precipitation at 0.58 resolution. (c) As in (a), but for themean of 14 of the 17 CMIP5members listed in (d) and spread

(in mm). (d) Number of days that the daily average precipitation (in mmday21) for the land areas in the black box in

(b) occurred within each amount bin for select CMIP5 members, CMIP5 MME mean, and the CPC-Unified. The

CPC and model data were regridded to 1.08 resolution.
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as compared to 6 out of 17 (35%)CMIP3models in Liang

et al. (2008). The top ranking models for phase, RMSE,

and bias shown in Table 13 (HadCM3, HadGEM2-ES,

CNRM-CM5, CanESM2, and HadGEM2-CC) are also

the models with the highest spatial correlations of May–

October 850-hPa geopotential heights and winds when

comparedwith the InterimEuropeanCentre forMedium-

RangeWeather Forecasts (ECMWF)Re-Analysis (ERA-

Interim; Geil et al. 2013). The HadCM3, HadGEM2-ES,

and CanESM2 also perform the best over the larger

monsoon region (Table 12). Geil et al. (2013) find that

the models that best represent the seasonal shift of the

monsoon ridge and subtropical highs over the North

Pacific andAtlantic tend to have the least trouble ending

the monsoon, suggesting there is room for improvement

over the region through an improved representation of

the seasonal cycle in these large-scale features.

e. Great Plains low-level jet

An outstanding feature of the warm season (May–

September) circulation in North America is the strong

and channeled southerly low-level flows, or the Great

Plains low-level jet (LLJ), from the Gulf of Mexico to

the central United States and the Midwest (Bonner and

Paegle 1970; Mitchell et al. 1995). The LLJ emerges

in early May in the transition of the circulation from

the cold to the warm season. It reaches its maximum

strength in June and July. After August, the jet weakens

and disappears in September when the cold season cir-

culation starts to set in. While many studies have exam-

ined specific processes associatedwith the LLJ (Blackadar

1957; Wexler 1961; Holton 1967), such as its nocturnal

peak in diurnal wind speed oscillation, as well as precip-

itation, the jet is a part of the seasonal circulation shaped

primarily by the orographic configuration in North

America, particularly the Rocky Mountain Plateau

(e.g., Wexler 1961). An important climatic role of the

LLJ is transporting moisture from the Gulf of Mexico

to the central and eastern United States (Benton and

Estoque 1954; Rasmusson 1967; Helfand and Schubert

1995; Byerle and Paegle 2003). Because the moisture is

essential for development of precipitation, even though

additional dynamic processes are required for the latter

to happen (Veres and Hu 2013), correctly describing the

LLJ and its seasonal cycle is critical for simulating and

predicting warm season precipitation and climate in

central North America.

Outputs from eight of the core models (CanESM2,

CCSM4, CNRM-CM5, GFDL-ESM2M, HadGEM2-

ES, MIROC5, MPI-ESM-LR, and MRI-CGCM3) were

analyzed for their simulation of the LLJ. Figure 16

compares the spatial profile and seasonal cycle between

the MME mean and the NCEP–National Center for

Atmospheric Research (NCAR) reanalysis in terms of

the summer 925-hPa winds, the vertical structure of the

summer meridional wind, and the seasonal cycle of the

LLJ. While the overall features of the simulated LLJ

compare well with the reanalysis results, several details

differ. First of all, the models produce a peakmeridional

wind around 925hPa, whereas the reanalysis result peaks

around 850hPa. This difference has little impact from the

vertical resolution of the models and the reanalysis

TABLE 10. Error statistics for the CMIP5 model precipitation over the northeastern United States. The mean absolute error (milli-

meters per season), RMSE (mmday21), and mean bias (model/observed) for 14 CMIP5 models verified using the daily CPC-Unified

precipitation within the black box in Fig. 10b. Themean and standard deviation of the statistics across themultimodel ensemble are given,

as well as the statistics of the MME mean precipitation.

Model Mean absolute error (mm season21) Root-mean-square error (mmday21) Mean bias (model/obs)

CanESM2 94.02 1.08 1.04

CCSM4 101.07 1.06 1.10

GFDL-ESM2M 101.32 1.15 1.13

GFDL CM3 103.53 1.14 1.14

BCC-CSM1.1 104.62 1.16 1.08

CNRM-CM5 104.99 1.12 1.16

HadGEM-ES 105.41 1.18 1.16

MIROC-ESM 111.21 1.25 0.92

NorESM1-M 112.70 1.23 1.08

CSIRO Mk3.6.0 114.49 1.46 1.03

IPSL-CM5A-LR 115.96 1.27 1.03

MIROC5 118.35 1.28 1.20

INM-CM4.0 123.83 1.34 1.20

MRI-CGCM3 126.15 1.48 1.12

mean 109.83 1.23 1.10

std dev 9.25 0.13 0.08

MME mean 84.55 0.89 1.10
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FIG. 13. Comparison of precipitation and temperature extremes for southern U.S. regions between the

CMIP5models and CPC andGHCNobservations, respectively, for 1979–2005. (left) Taylor diagramof the

spatial pattern of annual number of days when precipitation . 10mmday21 over the SW, SC, and SE

United States. (right) Taylor diagram of the spatial pattern of annual number of days when Tmax . 328C
(908F) for the three regions. The standard deviations have been normalized relative to the observed values.

(A: CanESM2; B: CCSM4; C: GFDL CM3; D: GFDL-ESM2G; E: GFDL-ESM2M; F: GISS-E2-R; G:

HadCM3; H: HadGEM2-CC; I: HadGEM2-ES; J: IPSL-CM5A-LR; K: MIROC4h; L: MIROC5; M: MPI-

ESM-LR; and N:MRI-CGCM3). SW is defined as the contiguous United States south of 408N between 1258
and 1108W; SC is the contiguous United States south of 408N between 1108 and 908W; and SE is the con-

tiguous United States south of 408N between 908 and 708W. All data were regridded to 2.58 resolution.
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because they share the same vertical resolution below

500 hPa. For a few models that have more model levels

below 500 hPa, their vertical profile of the meridional

wind shows a similar peak at 925 hPa. The vertical extent

of the LLJ is shallower than that shown in the reanalysis,

as suggested by the differences in Fig. 16f, which may be

related to the peak wind being at a lower level in the

troposphere. Second, the simulated LLJ extends much

further northward in theGreat Plains than the reanalysis

(Figs. 16g–i). For the seasonal cycle, the models show

strong southerly winds that persist from mid-May to

near the end of July, whereas the reanalysis shows that

the LLJ weakens substantially in early July (Fig. 16i).

While these detailed differences exist, the error statistics

in Table 14 indicate that these eight models simulate the

LLJ satisfactorily.

f. Arctic/Alaska sea ice

Since routine monitoring by satellites began in late

October 1978, Arctic sea ice has declined in all calendar

months (e.g., Serreze et al. 2007). Trends are largest at

the end of the summer melt season in September with a

current rate of decline through 2012 of214.3%decade21.

Regionally, summer ice losses have been pronounced in

the Beaufort, Chukchi, and East Siberian Seas since

2002 causing a lengthening of the ice-free season. The

presence of sea ice helps to protect Alaskan coastal re-

gions from wind-driven waves and warm ocean water

that can weaken frozen ground. As the sea ice has re-

treated farther from coastal regions and ice-free summer

conditions are lasting for longer periods of time (in some

regions by more than 2 months during the satellite data

record), wind-driven waves, combined with permafrost

thaw and warmer ocean temperatures, have led to rapid

TABLE 11. Annual bias in the number of heavy precipitation

days (precipitation . 10mmday21) and hot days (Tmax . 328C
(908F)] for the southern U.S. regions (defined in Fig. 13) for 1979–

2005. The mean and standard deviation of the biases across the

multimodel ensemble are given, as well as the statistics of theMME

mean heavy precipitation and hot days. Observed actual values

from the GHCN and CPC datasets are shown in parentheses. All

data were regridded to 2.58 resolution.

Number of heavy

precipitation days

Number of

hot days

SW SC SE SW SC SE

Obs (8.5) (23.4) (37.5) (55.8) (59.5) (40.1)

CanESM2 26.8 216.9 224.3 13.8 8.0 34.7

CCSM4 2.4 29.6 211.1 28.3 25.6 220.6

GFDL CM3 0.1 216.1 223.1 239.9 249.4 237.4

GFDL-ESM2G 7.8 3.0 1.3 235.4 231.0 223.6

GFDL-ESM2M 8.2 3.1 2.4 233.1 226.4 219.4

GISS-E2-R 18.9 7.3 11.4 234.9 241.3 235.5

HadCM3 26.3 220.9 229.2 5.0 8.3 215.0

HadGEM2-CC 2.0 20.5 1.3 7.8 25.5 218.2

IHadGEM2-ES 23.5 25.3 21.0 9.6 20.3 215.8

IPSL-CM5A-LR 23.9 220.5 229.0 249.0 235.5 238.3

MIROC4h 1.3 25.0 22.5 217.2 14.3 10.7

MIROC5 23.2 213.1 213.5 214.1 13.8 1.6

MPI-ESM-LR 2.6 28.9 24.3 226.9 219.0 227.6

MRI-CGCM3 9.6 24.9 21.3 239.6 246.1 238.7

mean 2.09 27.74 28.78 218.73 215.41 217.36

std dev 7.12 9.01 13.04 21.25 22.90 20.85

MME mean 2.1 27.7 28.8 218.7 212.6 217.4

FIG. 14. Average monthly precipitation for 1979–2005 shown by

latitude in the North American monsoon region (longitudes

102.58–1158W) from (a) the CMAP observational estimate and

(b) the MME mean for the 17 core CMIP5 models and (c) their

difference, all in units of mmday21. The CMAP and model data

were regridded to T42 resolution (;2.88).
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coastal erosion (Mars and Houseknecht 2007; Jones

et al. 2009).

While the winter ice cover is not projected to disap-

pear in the near future, all models that contributed to the

IPCC 2007 report showed that, as temperatures rise,

theArcticOceanwould eventually become ice free in the

summer (e.g., Stroeve et al. 2007). However, estimates

differed widely, with some models suggesting a transi-

tion toward a seasonally ice-free Arctic may happen

before 2050 and others sometime after 2100. To reduce

the spread, some studies suggest using only models that

are able to reproduce the historical sea ice extent (e.g.,

Overland 2011; Wang and Overland 2009).

Historical sea ice extent (1953–2005) from 26 models

during September and March is presented as box and

whisker plots (Fig. 17), constructed from all ensemble

members of all models, with the width of the box repre-

senting the number of ensemblemembers. Table 15 shows

the biases for the individual models. Five climate models

(CanESM2, EC-EARTH, GISS-E2-R, HadGEM2-AO,

and MIROC4h) have mean September extents that fall

below the minimum observed value, with EC-EARTH,

GISS-E2-R, and CanESM2 having more than 75% of

their extents below the minimum observed value. Three

models (CSIROMk3.6.0, FGOALS-s2, andNorESM1-M)

have more than 75% of their extents above the maxi-

mum observed value. Overall, 14 models have mean

extents below the observed 1979–2005 mean September

extent. During March, several models fall outside the

observed range of extents, with 16 models having more

than 75% of their extents outside the observed maxi-

mum and minimum values (8 above and 8 below). Six

models essentially straddle the mean observed March

sea ice extent.

Spatial maps of March CMIP5 sea ice thickness aver-

aged from 1993 to 2005 are shown in Fig. 18 together

with thickness estimates from the Ice, Cloud, and Land El-

evation Satellite (ICESat; 2003–09; Kwok and Cunningham

2008). Table 15 shows the biases for the individualmodels

relative to the ICESat data. While we do not expect the

models to be in phase with the observed natural climate

variability and therefore accurately represent the mag-

nitude of the ICESat thickness fields, it is important to

assess whether or not the models are able to reproduce

the observed spatial distribution of ice thickness. Data

from ICESat and IceBridge, as well as earlier radar al-

timetry missions [European Remote Sensing Satellite-1

(ERS-1) and ERS-2], and submarine tracks indicate that

the thickest ice is located north of Greenland and the

Canadian Archipelago (.5m thick), where there is an

onshore component of ice motion resulting in strong

TABLE 12. Annual mean RMSE for precipitation (mmday21)

for each of the 17 core CMIP5 models compared with CMAP ob-

served estimates for the North American monsoon region, 208–
358N, 102.58–1158W. The mean and standard deviation of the

RMSE across the multimodel ensemble are also given. The CMAP

and model data were regridded to T42 resolution (;2.88).

Model RMSE (mmday21)

BCC-CSM1.1 1.92

CCSM4 1.53

CNRM-CM5 1.29

CSIRO Mk3.6.0 1.09

CanESM2 0.44

GFDL CM3 1.54

GFDL-ESM2M 1.72

GISS-E2-R 1.46

HadCM3 0.63

HadGEM2-ES 0.75

INM-CM4.0 1.11

IPSL-CM5A-LR 0.99

MIROC-ESM 1.32

MIROC5 1.58

MPI-ESM-LR 1.09

MRI-CGCM3 2.08

NorESM1-M 1.96

mean 1.32

std dev 0.47

TABLE 13. CMIP5model error statistics for the simulation of the

North American monsoon in the core region of northwest Mexico

(23.8758–28.8758N, 108.8758–104.8758W), calculatedwith respect to

the P-NOAA observational dataset. The mean and standard de-

viation of the statistics across the multimodel ensemble are given

also. The model data were regridded to the P-NOAA resolution

(0.58).

Model

RMSE

(mmday21)

Bias

(%)

Lag

(months)

BCC-CSM1.1 1.96 83.6 0

CanESM2 1.11 241.6 0

CCSM4 1.24 70.7 0

CNRM-CM5 0.75 40.4 0

CSIRO Mk3.6.0 0.77 24.6 0

GFDL CM3 1.57 74.6 1

GFDL-ESM2G 2.74 137.7 0

GFDL-ESM2M 2.48 117.8 1

GISS-E2-R 1.90 23.5 4

HadCM3 0.83 0.2 0

HadGEM2-CC 0.88 44.8 0

HadGEM2-ES 0.85 37.9 0

INM-CM4.0 1.67 29.7 4

IPSL-CM5A-LR 1.26 29.6 1

IPSL-CM5A-MR 0.92 1.4 1

MIROC-ESM 1.64 40.0 2

MIROC4h 1.32 65.4 0

MIROC5 1.71 91.4 0

MPI-ESM-LR 1.36 72.8 0

MRI-CGCM3 1.40 79.4 0

NorESM1-M 2.33 110.4 1

mean 1.46 52.10 0.71

std dev 0.58 44.87 1.23
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ridging. Thicknesses are smaller on the Eurasian side of

the Arctic Ocean, where there is persistent offshore

motion of ice and divergence, leading to new ice growth

in open water areas. Most models fail to show thin

ice close to the Eurasian coast and thicker ice along

the Canadian Arctic Archipelago and north coast of

Greenland. Instead, many models show a ridge of thick

ice that spans north of Greenland across the Lomonosov

Ridge toward the East Siberian shelf, with thinner ice in

the Beaufort/Chukchi and the Kara/Barents Seas. In

large part, this is explained in terms of biases in the

distribution of surface winds; for example, if a model

fails to produce a well-structured Beaufort Sea High,

this will adversely affect the ice drift pattern and hence

the thickness pattern. Nevertheless, when we compare

mean thickness fields from ICESat with thickness

fields from the CMIP5 models, we find that, for the

Arctic Ocean as a whole, the thickness distributions

from the models overlap with those from the satellite

product. However, for the North American side of the

Arctic Ocean model thicknesses tend be smaller than

thicknesses estimated from ICESat. This in part ex-

plains the low bias in September ice extent for some

of the models, as thinner ice is more prone to melting

out in summer. Models with extensively thick winter

ice (e.g., NorESM1-M and MIROC5) on the other

hand tend to overestimate the observed September ice

extent.

FIG. 15. Annual cycle in rainfall for theNorthAmericanmonsoon region for the historical (1979–2005) period of 21

CMIP5 models compared to the P-NOAA and CMAP observational datasets for (a) small (phase error 5 0),

(b) moderate (phase error 5 1), (c) large (phase error 5 2–4) phase errors, and (d) the MME mean and range

(shading) for all models. The CMAP and model data were regridded to the P-NOAA resolution (0.58).
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6. Discussion and conclusions

a. Synthesis of model performance

This study evaluates the CMIP5 models for a set of

basic climate and surface hydrological variables for annual

and seasonal means and extremes, and selected regional

climate features. Evaluations of model performance are

not straightforward because of the broad range of uses

of climatemodel data (Gleckler et al. 2008) and therefore

there is not an accepted universal set of performance

metrics. Issues relevant to performance are dependent on

several elements including decadal variability; obser-

vational uncertainties; and the fact that somemodels are

tuned to certain processes, often at the expense of other

FIG. 16. (a)–(c) Averaged summer 925-hPa wind (a) during 1971–2000 for NCEP–NCAR reanalysis, (b) eight-model CMIP5 ensemble

mean for the same period, and (c) reanalysis minus MME mean. Lower-troposphere mean vertical profile of meridional wind averaged

over 958–1008W for (d) the reanalysis, (e)MMEmean, and (f) the reanalysis minusMMEmean. Seasonal cycle of the 925-hPameridional

wind averaged over 27.58–32.58N for (g) the reanalysis, (h) MMEmean, and (i) the reanalysis minusMMEmean. All units are meters per

second. Shading indicates wind speeds greater than 3.0m s21 in (a),(b),(d),(e),(g),(h) and wind speeds greater than 1.0m s21 in (c),(f),(i).

The data were regridded to 2.58 resolution.

TABLE 14. Error statistics for the simulation of the Great Plains low-level jet (GPLLJ). The statistics are calculated over the regions

shown in Fig. 17 and are the RMSE and the index of agreement (Legates and McCabe 1999). The mean and standard deviation of the

statistics across the multimodel ensemble are also given. The data were regridded to 2.58 resolution before calculating the statistics.

Model

RMSE Index of Agreement

Intensity

(vertical)

Seasonal

cycle

Spatial

extent Average

Vertical

structure

Seasonal

cycle

Spatial

extent Average

CanESM2 0.87 0.85 0.87 0.87 0.95 0.96 0.94 0.95

CCSM4 0.91 0.88 0.86 0.88 0.95 0.96 0.94 0.95

CNRM-CM5 0.66 0.74 0.85 0.75 0.97 0.97 0.93 0.96

GFDL-ESM2M 0.90 1.01 0.85 0.92 0.93 0.93 0.92 0.93

HadGEM2-ES 1.06 0.98 0.84 0.96 0.92 0.95 0.95 0.94

MIROC5 1.12 0.65 0.88 0.88 0.91 0.98 0.93 0.94

MPI-ESM-LR 0.76 0.85 0.77 0.79 0.95 0.96 0.94 0.95

MRI-CGCM3 1.04 1.28 0.92 1.08 0.90 0.89 0.90 0.90

mean 0.92 0.91 0.86 0.89 0.94 0.95 0.93 0.94

std dev 0.16 0.13 0.04 0.07 0.02 0.02 0.01 0.01
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aspects of climate. The performance metrics evaluated

here are generally focused on basic climate variables

and standard statistical measures such as bias, RMSE,

and spatial correlation. One of the strengths of this study

is the broad range of evaluations that test multiple as-

pects of the model simulations at various time and space

scales and for specific important regional features that

we do not necessarily expect coarse-resolution models

to simulate well. Independently these metrics indicate

much better performance by certain models relative to

the ensemble, while some models have poor perfor-

mance in that a feature is not simulated at all, such as

lack of persistence in extreme hydrological events, or the

errors are unacceptably large. However, it is not clear

whether onemodel or set of models performs better than

others for the full set of climate variables.

Figure 19 shows a summary ranking of model per-

formance across all continental and U.S. domain anal-

yses presented in sections 3 and 4 in terms of biases with

the observational estimates. We choose not to show re-

sults for the regional processes as these are generally for

fewer models and only provide one sample of important

features of NorthAmerican climate. Othermetrics, such

as the RMSE, could have been used, but the bias values

were available for all continental analyses. Model per-

formance is shown by two methods: the first is the nor-

malized bias, calculated as the difference of the absolute

model bias from the lowest absolute bias value, divided

by the range in absolute bias values across all models.

A value of 0.0 indicates the lowest absolute bias and a

value of 1.0 indicates the highest value. The values re-

flect the distribution of values across models such that

outlier models are still identified. The second method is

the rank of the sorted absolute bias values, which is

uniformly distributed.

The first thing to note is the difference in spread

between the two panels in Fig. 19 for individual metrics,

which is a reflection of the two types of distribution of

values (model ensemble dependent and uniform). The

normalized metrics highlight outlier models that perform

FIG. 17. September and March sea ice extent from 26 CMIP5

models compared to observations from the National Snow and Ice

Data Center (NSIDC) from 1953 to 2005. For each model, the

boxes represent interquartile ranges (25th–75th percentiles). Me-

dian (50th percentile) extents are shown by the thick horizontal bar

in each box. The width of each box corresponds to the number of

ensemble members for that model. Whiskers (vertical lines and

thin horizontal bars) represent the 10th and 90th percentiles. Mean

monthly extents are shown as diamonds. Corresponding mean,

minimum, and maximum observed extends are shown as red and

green lines, respectively.

TABLE 15. Biases in CMIP5 model Arctic sea ice extent and

thickness. Biases are based on the ensemble mean for each model

that hasmore than one ensemblemember and computed relative to

the observed value. The mean and standard deviation of the sta-

tistics across the multimodel ensemble are also given. September

extent bias is in 106 km2. March ice thickness bias is in meters. For

the calculation of March thickness bias, the model data for 1993–

2005 were regridded to the ICESat resolution and compared to the

ICESat data for 2003–09.

Model

September extent

bias (106 km2)

March thickness

bias (m)

BCC-CSM1.1 20.439 20.05

CanCM4 21.881 20.76

CanESM2 22.221 20.44

CCSM4 0.537 0.08

CESM1 (CAM5) 0.698 0.11

CNRM-CM5 20.638 20.27

CSIRO Mk3.6.0 3.952 0.31

FGOALS-s2 2.309 20.06

GFDL CM3 0.231 20.37

GISS-E2-H 22.979 —

GISS-E2-R 22.653 20.31

HadCM3 20.772 20.20

HadGEM2 21.845 21.06

HadGEM2-CC 20.035 20.52

HadGEM2-ES 21.318 20.90

INM-CM4.0 21.468 20.04

IPSL-CM5A-LR 0.708 0.02

IPSL-CM5A-MR 20.718 20.32

MIROC-ESM-CHEM 20.465 20.81

MIROC-ESM 20.783 20.85

MIROC4h 21.673 20.71

MIROC5 20.918 20.04

MPI-ESM-LR 0.070 20.57

MRI-CGCM3 20.931 20.16

NorESM1-M 1.205 20.30

mean 20.48 20.34

std dev 1.54 0.36
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much better than the rest of the models [e.g., GFDL-

ESM2M for JJA temperature] or much worse (e.g., INM-

CM4.0 for DJF precipitation or CanEMS2 for JJA

temperature). Another example is persistent precipi-

tation events (P Persist for the United States), for which

there is a cluster of eight models that do equally poorly

compared to the rest of the models. No single model

stands out as being better or worse for multiple metrics.

Some models do relatively well for the same variable

and a single/both season across all regions, such as

HadGEM2-ES and MIROC5 for precipitation.

The rankings in the bottom panel are more clustered

across analyses, such as for the Hadley Center models

for DJF temperature, although the actual biases are

generally not that different to the other models. The

MRI-CGCM3 is consistently ranked low for runoff ra-

tios in all regions and for the number of summer/frost

days and growing season length (and in terms of the

normalized metrics). The INM-CM4.0 model is consis-

tently ranked low for precipitation in both seasons and

DJF temperature, although again its normalized values

are generally not very different from the othermodels. It

is tempting to provide an overall ranking or weighted

metric across all analyses for each model, but there is no

obvious way of doing this for a diverse set of metrics,

although this has been attempted in other studies (e.g.,

Reichler and Kim 2008). Nevertheless, it is useful to

identify thosemodels that are ranked highly for multiple

metrics. For example, the following models are ranked

in the top 5 for at least 12 metrics (approximately one-

third of the total number of metrics): MPI-ESM-LR

(16 metrics), GISS-E2-R (15 metrics), CCSM4 (14 met-

rics), CSIRO Mk3.6.0 (14 metrics), and BCC-CSM1.1

(12 metrics). The following are the bottom two models:

GFDL CM3 (6 metrics) and INM-CM4.0 (4 metrics).

b. Changes in performance between CMIP3 and
CMIP5 for basic climate variables

A key question is whether the CMIP5 results have

improved since CMIP3 and why. As mentioned in the

introduction, the CMIP5 models generally have higher

horizontal resolution and have improved parameteri-

zations and additional process representations since

CMIP3. Several of the analyses presented here in-

dicate improved results since CMIP3 (e.g., for the North

American monsoon), by comparison with earlier stud-

ies. Here we show a direct comparison of CMIP5 with

CMIP3 results for basic climate variables in Fig. 20, which

shows RMSE values for CMIP5 and CMIP3 models for

seasonal precipitation and surface air temperature over

North America and SSTs over the surrounding oceans.

Of the 17 core CMIP5 models, 14 have an equivalent

CMIP3 model that is the same model (HadCM3), a

newer version, or an earlier related version, and so a direct

comparison of any improvements since CMIP5 is feasible.

Overall, the MME mean performance has improved

slightly in CMIP5 for nearly all variables. For example,

there is a reduction in the MME mean RMSE for summer

precipitation (0.90mmday21 forCMIP3and0.86mmday21

for CMIP5) and for winter SSTs (1.728–1.558C). The largest

FIG. 18. (top)ObservedMarch ice thickness (m) from ICESat for

2003–09, (middle) ensemble mean ice thickness from 26 CMIP5

models (see Table 15 for list of models) averaged over 1993–

2005 with contours showing the MME standard deviation, and

(bottom) the difference between the modeled and observed

(CMIP52 observed) thickness. The model data were regridded to

the ICESat resolution.
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percentage reduction inRSME for theMMEmean is for

summer temperatures (11.8% reduction in RMSE). The

spread in model performance (as quantified by the

standard deviation) has remained about the same for

precipitation, increased for temperature, and decreased

for SSTs. The increase in spread for temperature is due

to both increases and decreases in model performance

relative to the CMIP3 models. Several models have

improved considerably and across nearly all variables

and seasons, such as the CCSM4, INM-CM4.0, IPSL-

CM5A-LR, and MIROC5. Reductions in performance

for individual models are less prevalent across variables

FIG. 19. Comparison of CMIP5models across a set of continental performancemetrics based

on bias values given in Tables 3–8. (top) Biases normalized relative to the range of bias values

across models, with lower values indicating lower bias. (bottom) Models ranked according to

bias values, with 1 indicating the model with the lowest bias and 17 indicating the model with

the highest bias. Results for models without available data are indicated in white. The bias

metrics shown (in order from left to right) are for regional precipitation P for DJF and JJA;

regional temperature T for DJF and JJA; annual SSTs for surrounding oceans (see Fig. 3);

annual runoff ratios Q/P; the annual number of summer days (SuDays), frost days (FrDays),

and growing season length (GSL); and east–west gradient in the number of persistent pre-

cipitation (P Persist) and soil moisture (SM Persist) events.
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but are large for CSIRO Mk3.6.0, HadCM3, and MRI-

CGCM3 for SSTs in both seasons. The CanESM2 has

worse performance than itsCMIP3 equivalent (CGCM3.1)

for all variables, although it is unclear how the two

models are related. Interestingly the HadCM3 model,

which is used for both the CMIP3 and CMIP5 simula-

tions, appears to have degraded in performance for SSTs.

c. Summary and conclusions

We have evaluated the CMIP5 multimodel ensemble

for its depiction of North American continental and

regional climatology, with a focus on a core set ofmodels.

Overall, the multimodel ensemble does reasonably well

in representing the main features of basic surface climate

over North America and the adjoining seas. Regional

performance for basic climate variables is highly variable

across models, however, and this can bias the assessment

of the ensemble because of outlier models and therefore

the median value may be a better representation of the

central tendency of model performance (Liepert and

Previdi 2012). No particular model stands out as per-

forming better than others across all analyses, although

some models perform much better for sets of metrics,

mainly for the same variable across different regions.

Higher-resolution models tend to do better at some as-

pects than others, especially for the regional features

as expected, but not universally so and not for basic

climate variables. ESMs that simulate the coupled carbon

cycle and therefore have different atmospheric GHG

concentrations do not stand out as performing better or

worse than other models.

There are systematic biases in precipitation with

overestimation for more humid and cooler regions and

underestimation for drier regions. Biases in precip-

itation filter down to biases in the surface hydrology,

although this is also related to the representation of the

land surface in many models, with implications for as-

sessment of water resources and hydrological extremes.

The poor performance in representing observed sea-

sonal persistence in precipitation and soil moisture is

a reflection of this. As many of the errors are systematic

across models, there is potential for diagnosing these

further based on a multimodel analysis.

The models have a harder time representing extreme

values, such as those based on temperature and precip-

itation. The biases in temperature means and extremes

may be related to those in land hydrology that affect the

surface energy balance and therefore can impact how

much energy goes into heating the near-surface air

during dry periods and in drier regions. Biases in pre-

cipitation and its extremes are likely related to differ-

ences in large-scale circulation and SST patterns, as well

as problems in representing regional climate features.

Hints of this are shown in the some of the analyses

presented here, such as the errors in regional moisture

divergence over North America, but linkages between

other regional climate features and terrestrial precip-

itation biases are not apparent, such as for western

FIG. 20. Comparison of CMIP5 and CMIP3 model performance for seasonal (DJF and JJA) precipitation P,

surface air temperature T, and SST. Results are shown as RMSE values calculated for 1971–99 relative to the GPCP,

CRU, and HadISST observational datasets. Precipitation and temperature RMSE values are calculated over North

America (1308–608W, 08–608N), and SST RMSE values are calculated over neighboring oceans (1708–358W, 108S–
408N). The core set of CMIP5 models and their equivalent CMIP3 models where available (otherwise indicated by

‘‘N/A’’) are shown. The MME mean values are also shown.
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Atlantic winter cyclones, and further investigation is re-

quired to diagnose these. Part II indicates that most

models have trouble representing teleconnections be-

tween modes of climate variability (such as ENSO) and

continental surface climate variables, and this may also

reflect the representation of mean climate.

Overall, the performance of the CMIP5 models in

representing observed climate features has not im-

proved dramatically compared to CMIP3, at least for the

set of models and climate features analyzed here. There

are somemodels that have improved for certain features

(e.g., the timing of the North American monsoon), but

others that have becomeworse (e.g., continental seasonal

surface climate).

The results of this paper have implications for the

robustness of future projections of climate and its asso-

ciated impacts. Part III evaluates the CMIP5 models for

North America in terms of the future projections for the

same set of climate features as evaluated for the twen-

tieth century in this first part and in Part II. While model

historical performance is not sufficient for credible

projections, the depiction of at least large-scale climate

features is necessary. Overall, the models do well in

replicating the broad-scale climate of North America

and some regional features, but biases in some aspects

are of the same magnitude as the projected changes

(Part III). For example, the low bias in daily maximum

temperature over the southern United States in some

models is similar to the future projected changes. Fur-

thermore, the uncertainty in the future projections

across models can also be of the same magnitude the

model spread for the historic period.
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